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Study on laser-generated Lamb waves propagation in
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The propagation characteristics of laser-generated Lamb waves in thin composite plates are theoretically
studied. Taking the anisotropic and viscoelastic properties of the composite material into account, the
finite element models for simulating laser-generated Lamb waves in the composite material are established
in the frequency domain. Numerical results are calculated in purely elastic and viscoelastic transversely
isotropic plates, respectively. The effects of the anisotropic and viscoelastic properties on the propagation
of Lamb waves are analyzed in detail. The numerical results exhibit that the features of the laser-generated
Lamb wave, including attenuation, velocity, frequency, and the dispersive nature, have a close relationship
with the anisotropic and viscoelastic properties of the material.
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Laser ultrasound technique (LUT)[1−3] is a promising
technique for nondestructive evaluation and material
characterization applications because of its noncontact
feature and its ability to generate broadband signals. For
this reason, previous studies have investigated the wave
propagation using this technique, such as bulk waves[4],
surface acoustic waves[5,6], and even Lamb waves in thin
plates[7,8]. However, the numerous publications regard-
ing this subject offer limited information, as they are
mainly concerned with modeling only elastic materials.
Given that polymers or polymer-based matrix compos-
ites are widely used in aircraft, spacecraft, and other en-
gineering industries, and because these materials possess
anisotropic and viscoelastic properties that can strongly
affect the propagation of ultrasonic waves, the LUT in
the application of nondestructive evaluation of compos-
ite materials has attracted increasing attention in recent
years.

Laser-generated ultrasonic waves in anisotropic and
viscoelastic structures, which are generally encountered
in aeronautical materials and micro-electro-mechanical
systems (MEMSs), are of considerable interest because
of their application in the nondestructive evaluation of
anisotropic and viscoelastic properties. In order to de-
termine the properties of a given composite material, the
signal generated by a laser source in such a material must
be well understood. Nevertheless, the features of the gen-
erated ultrasound are dependent on the anisotropy and
the viscoelasticity in the composite material. Hence, the
signals will become difficult to interpret. Many publica-
tions can be found so far in the propagation of laser ultra-
sonic waves in anisotropic materials, but the viscoelastic-
ity of materials was ignored[9−13]. To date, little work has
been published on the investigation of laser-generated ul-
trasound problems in viscoelastic and anisotropic solids.
Constitutive relations developed in the Fourier domain
have been modeled, using complex moduli representing
the viscoelastic material properties that allow the dy-
namic behavior of these media to be properly described
as well as several cases of the propagation of ultrasonic

waves in plates made of dissipative materials[14,15]. How-
ever, these models are limited to investigating viscoelas-
tic waves generated by various transducers that cannot
obtain ultrasound signals with high spatial resolution.

Due to the complexity of the generation and prop-
agation of laser ultrasonic waves in viscoelastic and
anisotropic materials, numerical methods are more suit-
able in dealing with complicated processes, especially
those that involve various parameters. The finite ele-
ment (FE) method[16,17], used in solving problems in the
frequency domain[18,19], has many advantages. It is flexi-
ble in terms of modeling complicated geometries and can
easily obtain full field numerical solutions. In addition,
compared with the classical FE method[12,13] utilizing nu-
merical routines requiring hundreds or thousands of itera-
tive calculations to produce time marching solutions, the
proposed method is more time-efficient; this is because it
consists of solving the dynamic equations of equilibrium
for a limited number of frequencies that constitute the
frequency spectrum of a temporal excitation. Further-
more, the complex moduli representing the viscoelastic
property introduced in this method can effectively simu-
late the propagation of laser ultrasonic waves in viscoelas-
tic materials. In this letter, the FE method is adopted
to establish the models of laser-generated Lamb waves
in composite plates in the frequency domain. Laser-
generated Lamb waves in anisotropic and viscoelastic
plates are also studied quantitatively.

An infinite homogeneous transversely isotropic plate
made of a linearly viscoelastic material with thickness
h was considered (Fig. 1). Coordinates x, y, and z of
the model were chosen to be parallel with the principal
axis of the medium, with y being the optical axis of the
pulsed laser line source radiation. The motion was as-
sumed to take place in three dimensions (x, y, and z),
and the displacements in the x, y, and z directions are
represented as u, v, and w, respectively. Here, the pulsed
laser line source extended along a given direction and
produced non-null displacements in both directions of x
and y only (Fig. 2). With the plain strain conditions
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εxz = εyz = εzz = 0, the displacement w and all deriva-
tives with respect to z vanished. The displacement of the
two-dimensional (2D) general equation is written in the
frequency domain as[19]

{
C∗

11ũxx + C∗

12ṽxy + C∗

66(ũyy + ṽxy) + ρω2ũ = 0
C∗

22ṽyy + C∗

12ũxy + C∗

66(ũxy + ṽxx) + ρω2ṽ = 0
, (1)

where (ũ, ṽ) is the Fourier transform of the displacement
vector, ρ is the material density, and ω is the angular
frequency. The moduli C∗

ij in Eq. (1) can be defined
to be complex quantities if the material is viscoelastic:
C∗

ij = C
′

ij + iC
′′

ij , with the real and imaginary parts
representing the elastic and viscoelastic moduli, respec-
tively. The aforementioned partial differential equation
(Eq. (1)) must be written in the following form imposed
by the commercial software used in this study[20]:

∇ · (c∇Ũ) − aŨ = 0, (2)

where ∇ is the vector differential operator defined as

∇ =
(

∂
∂x

, ∂
∂y

)
; the Ũ to be determined corresponds to

the displacement vector (ũ, ṽ); the coefficients c and a

are 2×2 matrices[19].
The boundary conditions are expressed as the Neu-

mann type, which corresponds to an excitation source on
the laser illuminative region and to a stress-free bound-
ary on the others. In addition, the initial displacement
and velocity are null.

Equations (1) and (2) are valid in any plane, where
x and y represent the orthotropic axis of the plane of
propagation. The composite plate made of unidirec-
tional fibers has the transverse isotropy symmetry. The
viscoelastic moduli are defined in a coordinate system,
where the y direction is normal to the plate, the z di-
rection coincides with the fibers, and the x direction is
normal to fibers (Fig. 1). If the pulsed laser line source
extends along z and produces non-null displacements
in both directions x and y, the plane of propagation is
isotropic and C∗

22 = C∗

11, C∗

12 = C∗

11− 2C∗

66. On the
other hand, if the pulsed laser line source extends along

Fig. 1. Schematic diagram for laser irradiating sample.

 
 

 
 

Fig. 2. Cross-section of the sample.

x and produces non-null displacements in both directions
y and z only, the plane of propagation is anisotropic and
the previous moduli in Eqs. (1) and (2) are replaced as
follows: C∗

11 by C∗

33, C∗

66 by C∗

55, and C∗

12 by C∗

13.
When modeling the propagation in the frequency do-

main, viscoelastic absorbing regions (ARs) must be used
around the plate to avoid undesired reflections that would
exist due to the permanent established regime (Fig. 2).
In 2D problems, these regions consist of areas having
gradually increasing viscoelastic properties, so that in-
coming waves do not encounter extreme changes in the
acoustic impedance while being increasingly attenuated
as they propagate deeply into the AR. The following func-
tion is used to define complex moduli involved in the
AR[21]:

Im(C∗AR
ij ) = C

′′

ij + A(
|xab − x|

Lab

)3C
′

ij , L − Lab < x ≤ L,

(3)

where C
′

ij and C
′′

ij represent the material properties in the
domain of propagation (DP), i.e., the domain of interest
for the generation and propagation; C∗AR

ij represents the
material properties in the AR; xab = 30 mm is the po-
sition of the interface separating the DP and the AR; L
= 40 mm is the length of the plate; Lab = 10 mm is the
length of the AR; and A = 50 is a coefficient that may be
adjusted to minimize the acoustic impedance mismatch
between the DP and the AR.

The spatial resolution of the FE model is critical for
the convergence of these numerical results. The spatial
mesh of the plate is defined so that the smallest wave-
length of any mode is supposed to propagate in the fre-
quency range of the excitation. Triangular elements with
quadratic behavior are used to mesh the DP, which sat-
isfies[18]:

Le ≤ 1

10

C

fmax
, (4)

where Le is the length of the mesh, C represents the high-
est (longitudinal) wave speed of the medium, and fmax is
the highest frequency in the ultrasonic fields.

The numerical example illustrated in this letter is for
the plate made of carbon fibers impregnated in an epoxy
matrix. The material is anisotropic and viscoelastic, and
has been widely used in the aerospace industry. Typical
material properties used as input data in the calculation
are given in Table 1[22].

Harmonic waves can be generated by using pulsed laser
techniques[23]. In this letter, the laser source is replaced
by an equivalent stress and is given by[24]

f(t) =
2

α
√

2π
exp

[
− (t − t0)

2

2α2
ω2

c

]
sin(ωct), (5)

Table 1. Complex Viscoelastic Properties of the
Carbon Fibers/Epoxy Matrix Composite Material

Density ρ(g/cm3) 1.82

C∗

11(GPa) 12+0.8i

C∗

33(GPa) 140+10i

C∗

66(GPa) 3.3+0.2i

C∗

55(GPa) 6.2+0.4i

C∗

13(GPa) 6+0.9i
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Fig. 3. (a) Time history of the excitation signal and (b) its
frequency spectrum.

where α is a parameter controlling the pulse width, t0
determines the pulse delay time, and ωc = 2πfc is the
center angular frequency of the pulse. Here, we choose
α = 1.2, t0 = 5 µs, and fc = 0.5 MHz. Figures 3(a) and
(b) show the time history of the chosen excitation pulse
and its frequency spectrum, f(t) and F (f), respectively.

The frequency spectrum F (f) is typically used as the
excitation source of the FE model in the frequency do-
main. As shown in Fig. 3(b), the frequency content
of the pulse is confined to 0 ≤ f ≤ 1 MHz, and 100
frequency components are enough to represent the ex-
citation source. In the calculation, 100 stationary anal-
ysis runs for the corresponding forces amplitudes were
performed using the single parametric solution in the
frequency domain. Complex displacements were then
predicted in both x and y directions for the whole set
of nodes. Temporal waveforms were reconstructed for
several node positions by applying an inverse Fourier
transform for the set of complex displacements that were
predicted for the 100 frequency components of the input.

In the 2D model, the plane is supposed to be 40 mm
in length and 0.1 mm in thickness, and the position of
the laser source is located at x = 0, as shown in Fig. 2.
Two distinct cases were hereby investigated. In the first
case, the carbon fibers/epoxy matrix composite material
was considered to be a purely elastic material (except for
the AR). The real elastic modulus shown in Table 1 was
used as input data. Afterwards, a viscoelastic material
was considered, in which a complex viscoelastic modulus
was used as input data.

Figures 4(a) and (b) show the normal displacement
waveforms propagating along the x and z directions in
the plate, respectively. The source-receiver distances are
3 and 6 mm, respectively. The shapes of the viscoelastic
waveforms look very similar to those in purely elastic
medium. It is shown that the propagation velocities of
the viscoelastic waves are the same as those of the elastic
waves. This is because the viscoelasticity of the material
has no effect on the propagation velocity of ultrasonic
waves. Moreover, the result shows that the lower fre-
quency components of the symmetric mode (s0) and
asymmetric mode (a0) are dominant in such a thin plate.
At early times, the mode s0 arrives at the observation
point first, followed later by the dispersive mode a0. The
amplitude of the mode s0 is less than that of the mode
a0. In addition, the mode s0 exhibits a non-dispersive
spike, while the dispersive nature of the mode a0 is clear,
i.e., the high-frequency components of the mode a0 travel
faster than the lower frequency components.

Many distinctions can be found when comparing the

transient waveforms in Figs. 4(a) and (b). For instance,
the velocities of the modes s0 and a0 propagating along
the z direction are faster than those propagating along
the x direction. This is because the real elastic modulus
along the fiber direction is larger than what is consid-
ered normal to the fiber direction. In addition, Fig. 4
shows that the material viscoelasticity has no effect on
the dispersion of the mode a0. However, the mode a0

propagating along the x direction shows a clearer disper-
sive nature than that propagating along the z direction.
This phenomenon is also shown in Fig. 5. Furthermore,
the frequencies of the mode a0 propagating along the x

direction are higher than those propagating along the z

direction. Numerical results obtained by the FE method
are compared with the experimental results reported
before[11]. In the case of the anisotropic plate, finding
good agreement in terms of the characteristics of the
modes s0 and a0 propagation is imperative.

Comparing the transient waveforms in the viscoelas-
tic material with those in the purely elastic material,
viscoelasticity is clearly shown to have a significant in-
fluence on the features of laser-generated Lamb waves.

Fig. 4. Transient viscoelastic and elastic waveforms in the
0.1-mm-thick carbon fibers/epoxy matrix plates. (a) Along
x direction; (b) along z direction.

Fig. 5. Dispersion curves of the mode a0 in the 0.1-mm-thick
viscoelastic carbon fibers/epoxy matrix plate.
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Figure 4 shows that the amplitudes of the elastic waves
are significantly higher than those of the viscoelastic
waves. This is particularly true for the mode a0, which
is more sensitive to the material viscoelasticity than the
mode s0. The amplitude ratio of the mode a0 of the
viscoelastic wave to the elastic wave decreases with the
increase of the source-receiver distance in the same prop-
agating direction, demonstrating the effect of the linear
viscoelasticity of the material. Moreover, the amplitudes
of the higher-frequency components of the mode a0 sig-
nificantly vary more than the lower-frequency ones, as
shown in Fig. 4. This is because the attenuation in
higher-frequency modes is generally higher than that in
the lower-frequency modes.

Figure 6 shows the huge effect of viscoelasticity on
the amplitudes of the s0 and a0 modes coexisting at the
frequencies ranging from 0.2 to 0.8 MHz. The Lamb
mode amplitude decreases gradually in the DP, i.e., from
x = 0 to 30 mm, and is minute when entering the AR
if the material viscoelasticity is taken into account. As
expected, in the AR, i.e., from x = 30 to 40 mm, the
amplitude drastically diminishes and tends toward zero,
indicating that no wave propagates backwards along the
DP to influence the incident wave. It is also shown in
Fig. 6 that the amplitudes of the higher-frequency com-
ponents of the Lamb mode significantly vary more than
the lower-frequency ones, which is in agreement with the
numerical results presented in Fig. 4.

In conclusion, the propagation of laser-generated Lamb
waves in composite plates have been studied quantita-
tively by employing the FE method in the frequency
domain, taking into account the anisotropic and vis-
coelastic properties of the material. Numerical results
show the laser-generated ultrasonic waves in a thin plate
are typical Lamb waves. The amplitudes of the vis-
coelastic Lamb waves decrease gradually with the in-
crease of the propagation distance; in addition, the at-
tenuation of various frequency components of the Lamb
wave are also different. The waveforms propagating

Fig. 6. Surface normalized normal displacement along the x
direction at different frequencies of (a) 0.2, (b) 0.4, (c) 0.6,
and (d) 0.8 MHz in the viscoelastic plate.

in the direction normal to the fiber exhibit clearer dis-
persive characteristics of the Lamb wave signal, and the
frequencies are higher than the waveforms propagating
in the direction parallel to the fiber direction. These re-
sults play an important role in conducting nondestructive
evaluation and characterization of the sheet composite
materials in the industry.
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